
Optimizing Illumination: Using an Evolutionary
Algorithm to Balance Artificial and Natural Light in

Rooms
Ali Asghar Chakera

Department of Computer Science
Habib University
Karachi, Pakistan

0009-0007-2038-9139

Hafsa Khurram
Department of Computer Science

Habib University
Karachi, Pakistan

0009-0006-1400-2148

Syed Ibrahim Ali Haider
Department of Computer Science

Habib University
Karachi, Pakistan

0009-0000-2714-992X

Syeda Saleha Raza
Department of Computer Science

Habib University
Karachi, Pakistan

saleha.raza@sse.habib.edu.pk

Abstract—This report describes the application of Compu-
tational Intelligence (CI) techniques to optimize the number
of artificial light sources in a physical space while taking
into account the presence of external light sources, such as
sunlight. The project aims to reduce electricity consumption
through artificial light sources, which can account for up to
15% of the average electricity bill. The approach involves the
use of evolutionary algorithms to simulate the process of natural
selection and finds the optimal number and placement of artificial
light sources in the room. The fitness of each solution will be
evaluated based on an objective function that considers factors
such as the number of lights, natural sources of light, obstacles
in the room, shadows, and light intensity threshold for the
entire room. The report also outlines the realistic constraints
used in the project, including specific calculations for sunlight
entering the room, and the physical space data set, which contains
information such as the number and position of walls and
windows. Relevant work in the area is discussed, including the
importance of incorporating natural light sources and the use
of genetic algorithms in similar projects. The proposed solution
aims to provide a cost-effective and environmentally friendly way
of optimizing lighting in physical spaces.

Index Terms—Evolutionary Algorithm, Computational Intelli-
gence, Artificial Light Optimization

I. INTRODUCTION

For the scope of this project, we created a room that contains
tiles, windows, obstacles, windows (for sunlight), shadows,
and artificial lights. All five of these elements contributed to
the final fitness function that is used. For this project, we
have divided the room into 100 tiles with 10 ∗ 10 dimensions,
however for future work this can be easily customized given
any dimensions.

A. Motivation and related work

The problem of Optimizing Artificial Lighting in a room has
been addressed in a number of papers. In [1], the authors use a

genetic algorithm to optimize the number of lights in a room.
The fitness function used in the paper considers the number
of lights and the light intensity threshold for the entire room.
The authors also consider the position of the lights in the room
and their distance from the walls. The paper does not take into
account the presence of natural light sources, such as sunlight,
shadows, and the position of the windows in the room. Our
paper is an extension of the same problem with the added
constraint of natural light. The motivation behind this paper is
to reduce the electricity consumption of a room by optimizing
the number of artificial lights in the room. This is done by
taking into account the presence of natural light sources, such
as sunlight, and the position of the windows in the room. This
paper aims to provide a cost-effective and environmentally
friendly way of optimizing lighting in physical spaces.

II. TECHNICAL BACKGROUND

Genetic algorithms are a type of optimization algorithm,
meaning they are used to find the optimal solution(s) to a
given computational problem that maximizes or minimizes a
particular function. Genetic algorithms represent one branch of
the field of study called evolutionary computation, in which
they imitate the biological processes of reproduction and
natural selection to solve for the ’fittest’ solutions [5]. Like in
evolution, many of a genetic algorithms processes are random,
however, this optimization technique allows one to set the level
of randomization and the level of control [5]. During each
generation, three basic genetic operators are applied to each
chromosome with certain probabilities, i.e. selection, crossover
and mutation [5].

A. Procedure

The general procedure for Genetic Algorithms, as described
by [5]:



1) Start: Generate random population of n chromosomes
(suitable solutions for the problem).

2) Fitness: Evaluate the fitness f(x) of each chromosome
x in the population.

3) New Population: Create a new population by repeating
following steps until the new population is complete.

a) Selection: Select two parent chromosomes from
a population according to their fitness (the better
fitness, the bigger chance to be selected).

b) Crossover: With a crossover probability cross over
the parents to form a new offspring (children). If
no crossover was performed, the offspring is an
exact copy of the parents.

c) Mutation: With a mutation probability mutate new
offspring at each locus (position in chromosome).

d) Accepting: Place new offspring in a new popula-
tion.

4) Replace: Use newly generated population for a further
run of the algorithm.

5) Test: If the end condition is satisfied, stop, and return
the best solution in the current population. 6) Loop: Go
to step 2.

III. PROBLEM DESCRIPTION

A. Tiles

1) Initialisation: The Tiles in the Room class were initial-
ized at the standard grid of 10× 10. The length and width of
the grids were initialized by the following formulas and these
were used throughout for the purpose of calculations etc.

WidthTile = WidthRoom/10 (1)

LengthTile = LengthRoom/10 (2)

Each Tile is also initialized to be completely empty in
terms of light. Light in each Tile is stored in three different
areas for different kinds of lighting.

2) Lit: This is a variable that stores a boolean value which
turns to True if the Tile is lit at either minimum capacity
or minimum fill. Both of these are calculated in the Room
function. This is one of the most important variables since
this is what we count at the count lit tiles function.

3) Fill vessel: Since Light from a light bulb or LED spreads
in a circle shape it is possible for a tile to be lit from either
of the eight sides that the tile has. This is why each tile has a
list with 8 positions that stores its fill from each side. This fill
is calculated in the Room’s lit tiles function. With this paper,
we set the minimum fill at 0.6 ie 60% of the total Tile’s area.
If the area of the tile exceeds this area we will mark Lit as
True.

Fig. 1. Representations of the directions

Fig. 2. Beam Angle Visualisation

4) Intensity: Lit is also dispersed around the room in
different forms where it may not be as intense as direct light.
What we see in such circumstances is that the light is dispersed
around with decreasing intensity as the distance between the
area or in this case the tile increases. To store such irregular
amounts we use the intensity variable where again if the
intensity crosses minimum intensity the area is marked as lit.

B. Lights

The lights class is a straightforward class that can be
initialized with its position on the grid and the height of the
ceiling ie. the height at which it is placed. For this paper, we
assume that the height of the ceiling and that of the Lights
is the same. Along with this we can return the length and
the starting position of the circle of direct light that the light
produces. Each light has something called the beam angle
which is basically the limit till which the light is formed. The
light spread is calculated according to this angle.



Fig. 3. Sunlight entering the room

This angle is calculated by the following equation:

spread = height · tan(beam angle)

This spread and the center of the circle are returned to the
Room class for its calculations.

C. Windows

The windows in the room can be placed at any of the four
sides of the room. They are defined as follows:

• Direction = {North, South,East,West}
• StartingPoint = {x, y} either x or y is 0 or the max

width or length respectively depending on the direction
of the window

• Length = l
• Width = w
• Height = h (height from the floor)

We calculate the area of the direct sunlight region in
the room with the help of the Sun’s altitude Sunaltitude at
different times of the day which we obtained from ephem [4].

This altitude is used to calculate the spread of natural light
in the room for these calculations we make the following
assumptions.

• The sun is always above the window at all times that the
sun is out

• That the sun is always in front of the window ie at a
90 deg angle at the window.

• That the direct sunlight entering the room will always be
greater than the light from the lights.

Since Sunlight originates from a window the shortest ray
of sunlight that enters the room enters through the bottom
ledge of the window whereas the shortest one enters through
the top of the window.

This is region of the sunlight is calculated through the
following equations:

sunlightmax =
(h+ l)

tan(altitude)
(3)

sunlightmin =
h

tan(altitude)
(4)

The region inside the sunlight is calculated through the given
equations by calculating:

sunlightmax − sunlightmin

D. Room

The Room is initialized with the following inputs
• width,
• height,
• length,
• obstacles,
• time,
• window list

The room function takes all of these parameters and gives us
the number of lit tiles by lighting up all of the tiles in the
direct light regions except for those in shadows. This also
takes care of the light dispersion around the room.

1) Direct Light from Lights: Whether a tile is in the direct
light region or not is calculated through the distance of the
tile from the center of the light region by using the method of
Pythagoras theorem we use the formula:

distance =
√
(∆x)2 + (∆y)2 (5)

If this distance is within the radius we will assume that the
tile is within the lit region. The tile however will not be
counted if it is in the shadow region.

2) Light from Windows: Direct Light from windows is
calculated through the light area formula from the windows
function. Since the direct sunlight from the window does not
fall in the shape of a circle the Euclidean distance, equation
5, is not required.

3) Light Dispersion: Direct light is not the only source
of light in the room this light also disperses with decreasing
intensity around the room. To achieve this we call a recursive
function that disperses light to neighborhood tiles with
decreasing intensity until a minimum of 0.2 intensity is
reached.

4) Shadows: The shadow region for a light bulb is an
important consideration in our project since the area that falls
within the shadow is not lit up. To calculate this area we use
the height of the obstacle and the beam angle of the light.

The shadow length is calculated suing the follwoing equa-
tion:

Lengthshadow =
Heightobstacle
tan(Anglebeam)

(6)



Fig. 4. The length of the shadow

IV. PROBLEM FORMULATION

This section focuses on the formulation of optimizing light
placement in a room to maximize the number of lighted tiles
while minimizing the number of artificial lights on the ceiling.
The optimization is carried out using a genetic algorithm,
which generates various combinations of light placements and
evaluates them based on an objective function that considers
the amount of light reaching the tiles, the number of artificial
lights on the ceiling, sunlight coming in through a window,
and obstacles such as walls, as well as their shadows.

A. Chromosome Structure

The chromosome structure is the data representation that’s
utilized in the genetic algorithm to describe a candidate
solution to the optimization problem of maximizing the
number of lit tiles in a room while minimizing the number
of ceiling lights. The chromosome structure in this project
refers to a list of light positions in the room.

The chromosome can be interpreted as a list of (x, y)
tuples, with each tuple denoting a position where light is
placed. The number of lights being used in the candidate
solution is represented by the length of the list.
A chromosome of length 3 may resemble something like
this: [(3, 1), (7, 3), (5, 7)] This would depict a solution with
three lights, each at positions (3, 1), (7, 3),, and (5, 7). The
visualization of this chromosome can be seen in 5.

The chromosome is created using the chromosome function,
which requires a Room object in addition to the width and
height of the room and produces a collection of light place-
ments inside the room dimensions at random to be used as a
starting point for the genetic algorithm’s optimization process.
Overall, chromosome structure is important in the genetic
algorithm because it offers a possible solution to the opti-
mization problem and is subject to crossover, mutation, and
selection during the evolutionary process.

Fig. 5. Chromosome Visualisation of [(3, 1), (7, 3), (5, 7)]

B. Fitness Function

The fitness function is a statistic used in computational
intelligence problems to assess the quality of a solution. The
fitness function, in this scenario, is intended to evaluate the
effectiveness of a chromosome, which represents a candidate
solution to the optimization problem of maximizing the
number of lighted tiles in a room while minimizing the
number of lights put on the room’s ceiling.

The fitness function requires a Room object and a list
of light positions as input. It generates a fitness value
indicating how effectively the given chromosome handles the
optimization problem.

The fitness value is computed as the weighted sum of two
objectives:

• Maximization of illuminated tiles.
• Minimization of lights in the chromosome.

The fitness function begins by lighting up the tiles in
the room by first using the Room.light.tiles() method
which lights up the corresponding lights with regard to
the chromosome given. After which Room.num.lit.tiles()
method is called which counts the number of lighted tiles,
this method takes in all the factors such as obstacles, sunlight,
and shadows. The number of lighted tiles reflects one of the
fitness function’s objectives, which we wish to maximize.

The fitness function then computes the number of lights
employed in the chromosome by lengthening the list of
light spots. The number of lights indicates the other fitness
function objective that we wish to minimize.

The fitness function employs a weighted sum to integrate
these two objectives into a single fitness value. Each objec-



tive’s weight, w, shows its relative importance. If w is close
to 1, the number of lighted tiles becomes the most important
criterion in judging fitness. If w is close to zero, the number
of lights in the chromosome will take precedence. A value of
w of 0.5 indicates that both objectives are equally important.

TABLE I
FITNESS VALUES FOR 5 POSSIBLE SOLUTIONS

Chromosome Num Lit
Tiles

Num Lights Fitness

[(0, 2), (2, 3), (3, 1)] 100 3 48.5
[(1, 0), (2, 2), (4, 1), (0,
4)]

98 4 46.0

[(0, 3), (2, 1)] 95 2 45.5
[(3, 2), (2, 3), (1, 1), (0,
2), (2, 0)]

99 5 47

[(1, 0), (3, 3), (0, 4)] 97 3 45.5

The fitness value is then computed as:

Fitness = w ∗ num.lit.tiles− (1− w) ∗ num.lights

This results in a greater fitness value for chromosomes that
light up more tiles while using fewer lights.

Table I shows the fitness values for five possible solutions.
The chromosome with the highest fitness value is the first
one, [(0, 2), (2, 3), (3, 1)], which has a fitness value of 48.5.
This chromosome uses only three lights to illuminate 100
tiles in the room. [(3, 2), (2, 3), (1, 1), (0, 2), (2, 0)] is the
second-best chromosome, which illuminates 99 tiles with 5
lights and has a fitness value of 47. The first chromosome has
the highest fitness value since it can illuminate the most tiles
with the fewest lights, which is the goal of the optimization
task.

After calculating the fitness value, the function restores
the room to its starting state and returns the fitness value
and the tile grid as a tuple. The tile grid is later used for
visualizing the lighted tiles and checking for fitness function
flaws.

C. Crossover

The crossover function is a genetic operator used in genetic
algorithms to integrate genetic information from two parent
chromosomes, often to produce offspring with novel genetic
combinations. In our lighting optimization challenge, as men-
tioned the chromosomes represent potential light placements
in a given room.

Given two parent chromosomes, parent1, and parent2, the
crossover function chooses two genes at random from the
parents to represent potential light locations.

The function then finds the minimum and maximum of
the two selected genes to decide the start and end genes for
breeding.

• Child1 is generated by combining the genes from
parent1 between the start and finish genes.

• Child2 is formed by combining the genes from parent2
that are not already present in child1.

Finally, the function joins child1 and child2 to form the
final offspring chromosome, which represents a new set of
possible light places in the room. The function returns the
offspring chromosome as its output.

TABLE II
PARENT INFORMATION AND CROSSOVER POINTS

Parent1 Parent2 Gene1 Gene2 Start
Gene

End
Gene

[(1, 2), (3,
4), (5, 6)]

[(2, 4), (6,
1), (8, 2)]

1 2 1 2

In II the crossover is performed between the 2 parents. Two
random genes are chosen from the parents, and the start
and end genes for crossing are based on the values of the
selected genes. So, in this case, Gene1 is 1 and Gene2 is 2,
consequently, the start gene is 1 and the end gene is 2.

TABLE III
OFFSPRING

Child1 Child2 Offspring
[(1, 2), (6, 1)] [(3, 4), (8, 2)] [(1, 2), (6, 1), (3, 4), (8, 2)]

In III it is shown Child1 is the first offspring formed by taking
genes from Parent1 from start.gene to end.gene. Child1 is
[(1, 2), (6, 1)] in the aforementioned situation as it inherits
the genes (1, 2) and (6, 1) from Parent1. Child2 is produced
by taking genes from Parent2 that were not present in Child1.
So, Child2 is [(3, 4), (8, 2)] since it contains the genes (3, 4)
and (8, 2) from Parent2.

By concatenating Child1 and Child2, we get the final
offspring [(1, 2), (6, 1), (3, 4), (8, 2)].

D. Mutation

The mutation function accepts an individual chromosome
(list of possible light locations) and mutates light positioning
by swapping two spots from the list of light positions.

• It chooses two random indices to exchange in each
chromosome.

• At the specified indices, swaps the two chromosomes.
• The mutated chromosome is returned.

To give an example, let’s assume we have an individual
[(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)]. Upon applying our mutate
function it will randomly generate 2 indexes to swap positions,
let’s assume these to be 2 and 4. The function will then swap
the chromosome at these indexes and will return the mutated
chromosome, which is [(1, 2), (9, 10), (5, 6), (7, 8), (3, 4)].

This function contributes to the diversification of the pop-
ulation of viable solutions and keeps the algorithm from
becoming stuck in a local minimum.



E. Parent and Survivor Selection

The selection process is a crucial component of any
evolutionary algorithm in the context of an optimization
problem. It is in responsibility for choosing the most optimal
individuals (or ”parents”) from the existing population to
establish the population’s future generation. Truncation
selection and tournament selection are two prevalent methods
of selection.

Truncation selection entails choosing the best performers in
the population and employing them as parents to develop
the next generation. Typically, the number of individuals
chosen for breeding is a predetermined percentage of the
population size. This strategy is straightforward to apply
and frequently leads to rapid convergence to a satisfactory
solution, particularly in situations with a relatively smooth
fitness landscape.

Tournament selection entails selecting a subset of individuals
at random from the population and then selecting the best-
performing individual from that subset as the parent for the
following generation. This procedure is repeated until the
desired number of parents is chosen. This strategy is more
stochastic than truncation selection and can help to maintain
genetic diversity within the population, which is useful in more
difficult optimization problems with a rough fitness landscape.

In the current optimization problem, truncation selection
and tournament selection were employed for parent and
survivor selection, respectively, because they produced the
best results. When truncation selection is used, only the fittest
individuals are chosen as parents for the following generation,
whereas tournament selection allows for a broader spectrum
of survivors and is able to prevent premature convergence.

V. EXPERIMENTS AND RESULTS

We ran our Evolutionary Algorithm for every hour of the
day which yielded different results depending on the Sun’s
altitude at that moment. We fixed the number of generations
to 100 with a population size of 30, and the other Evolutionary
Algorithm parameters were also kept constant. We ran our ex-
periments with varying positions of the window and arbitrary
obstacles in the room.

A. North facing Window

“Fig. 6” a fixed window at the north side of the room,
we ran our experiments for 24 hours with an interval of 3
hours between each run. In the obtained graph we can see that
the number of lights decreases as the sun’s altitude increases.
This is because the sunlight is able to light up the room and
the number of lights required to light up the room decreases.
The number of lights then decreases as the sun sets and the
room gets darker. There is some inconsistency in the graph
but that is because of the arbitrary obstacles and the number
of generations. “Table. IV” shows the light positions for each

hour of the day. The fitness value for each hour is also shown
in the table.

Fig. 6. Average number of lights in a room with a North facing window

TABLE IV
LIGHT POSITIONS FOR NORTH FACING WINDOW

Time Light Positions (x, y) n Fitness
12 am [(9, 8), (6, 1), (1, 8), (4, 5), (1, 0), 7 46.5

(0, 0), (9, 1)]
3 am [(8, 1), (6, 8), (0, 0), (0, 1), (5, 4), 7 46.0

(1, 5), (3, 0)]
6 am [(8, 8), (4, 7), (5, 4), (4, 5), (0, 8), 10 45.0

(8, 1), (0, 3), (0, 1), (5, 0), (1, 0)]
9 am [(9, 9), (8, 1), (6, 0), (5, 8), (2, 2), 7 46.5

(0, 7), (1, 0)]
12 pm [(8, 1), (6, 8), (5, 9), (5, 3), (1, 0), 8 46.0

(5, 5), (5, 7), (0, 6)]
3 pm [(9, 4), (7, 0), (1, 4), (5, 5), (3, 4)] 5 45.5
6 pm [(9, 9), (7, 4), (7, 1), (1, 6), (5, 6), 7 46.0

(4, 2), (1, 1)]
9 pm [(8, 9), (3, 7), (5, 8), (2, 0), (3, 2), 10 44.5

(5, 4), (0, 0), (3, 9), (1, 5), (7, 4)]

B. East facing Window

Similarly, for an East facing window we got the following
“Fig. 7” graph. In the obtained graph we can see that the
number of lights is minimum during the morning hours as the
Sun rises from the east and lights up the room. The number
of lights then increases as the Sun’s altitude increases and sets
in the west.

C. West facing Window

“Fig. 8” shows the results for a West facing window. In
the obtained graph we can see that the number of lights is
minimum during the evening hours as the Sun sets in the west
and lights up the room. The number of lights then increases
as the Sun sets and the room gets darker.



Fig. 7. Average number of lights in a room with an East facing window

Fig. 8. Average number of lights in a room with a West facing window

D. Visualization

“Fig. 9” shows the visualization of the room with a window
facing North and obstacles toward the east side of the room.
The white tiles show that they are lit whereas the dark
grey tiles are a region that is not lit. Moreover, the regions
having lighter shades of gray, show tiles that are partially lit
according to the light intensity they are receiving, considering
all the factors of our optimization problem. However, our
visualization requires more enhancement to show our results
efficiently.

VI. CONCLUSION

In this paper we have proposed a method to optimize the
number of lights in a room. We have used an Evolutionary
Algorithm to find the optimal positions for the lights depending
on the position of the window and the angle of the Sun.
We have also taken into account the obstacles in the room

Fig. 9. Visualization of the room with a North facing window and obstacles

which may block the light from reaching certain parts of the
room. We have performed experiments for different positions
of the window and different obstacles in the room. We have
also performed experiments for different times of the day.
We observed that the number of lights is minimum when the
window is facing the Sun and the number of lights increases
as the window faces away from the Sun which agrees with
logic.

VII. FUTURE WORK

This paper is currently limited in terms of the number of
experiments performed. We plan to perform more experiments
in order to get more accurate results. We also plan to use a
more accurate model for the Sun’s position which takes into
account the Earth’s elliptical orbit by using the Sun’s azimuth
angle as well. We also plan to use a more accurate model
for the Sun’s intensity which can help us illuminate the room
more accurately, and find more precise positions for the lights.
Moreover, for our visualization, we aim to use more profound
tools that can correctly display our results, such as Blender.

REFERENCES

[1] Saleha R. Aiman K. Sami M. Optical Illumination of rooms using
Genetic Algorithm. 2019

[2] Anca D. Galasiu and Jennifer A. Veitch. “Occupant preferences and
satis- faction with the luminous environment and control systems in
Daylit Of- fices: A Literature Review”. In: Energy and Buildings 38.7
(2006), pp. 728– 742. doi: 10.1016/j.enbuild.2006.03.001.

[3] Richard Perez et al. “Modeling daylight availability and irradiance com-
ponents from direct and global irradiance”. In: Solar Energy 44.5 (1990),
pp. 271–289. doi: 10.1016/0038-092x(90)90055-h.

[4] Ephem. [Online]. Available: https://rhodesmill.org/pyephem/index.html.
[Accessed: 10- May- 2023].

[5] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization,
and Machine Learning. Reading: Addison-Wesley.


